1. QUADRATIC EXPRESSIONS - Quick Review

- 1. If a, b, c are complex numbers and $a \neq 0$, then the expression $ax^2 + bx + c$ is called a *quadratic expression*.
- 2. If a, b, c are complex numbers and $a \neq 0$, then $ax^2 + bx + c = 0$ is called a *quadratic equation*.
- 3. A complex number α is said to be a *root* or *solution* of the quadratic equation $ax^2 + bx + c = 0$ if $a\alpha^2 + b\alpha + c = 0$.
- 4. The roots of $ax^2 + bx + c = 0$ are $\frac{-b \pm \sqrt{b^2 4ac}}{2a}$.
- 5. If α , β are the roots of $ax^2 + bx + c = 0$, then $\alpha + \beta = -\frac{b}{a}$, $\alpha\beta = \frac{c}{a}$.
- 6. If α and β are the roots of $ax^2 + bx + c = 0$, then $ax^2 + bx + c = a(x \alpha)(x \beta)$.
- 7. The quadratic equation having roots α , β is $(x \alpha)(x \beta) = 0$ or $x^2 (\alpha + \beta)x + \alpha\beta = 0$.
- 8. If $f(x) = ax^2 + bx + c = 0$ is a quadratic equation then the quadratic equation whose roots are the reciprocals of the roots of f(x) = 0 is f(1/x) = 0.
- 9. If $f(x) = ax^2 + bx + c = 0$ is a quadratic equation then the quadratic equation whose roots are greater by k than those of f(x) = 0 is f(x k) = 0.
- 10. If $f(x) = ax^2 + bx + c = 0$ is a quadratic equation then the quadratic equation whose roots are smaller by k than those of f(x) = 0 is f(x + k) = 0.
- 11. If $f(x) = ax^2 + bx + c = 0$ is a quadratic equation then the quadratic equation whose roots are numerically equal but opposite in ssign of the roots of f(x) = 0 is f(-x) = 0.
- 12. If $f(x) = ax^2 + bx + c = 0$ is a quadratic equation then the quadratic equation whose roots are multiplied by k of those of f(x) = 0 is f(x/k) = 0.
- 13. If $f(x) = ax^2 + bx + c = 0$ is a quadratic equation, then $b^2 4ac$ is called the *discriminant* of $ax^2 + bx + c = 0$.
- 14. If a, b, c are real then the nature of the rots of ax² + bx + c = 0 is as follows
 i) If b² 4ac < 0, then the rots are imaginary. Further the roots are conjugate complex numbers.
 ii) If b² 4ac = 0, then the roots are real and equal.
 iii) If b² 4ac > 0, then the roots are real and not equal.
- 15. If a, b, c are rational then the nature of the roots of $ax^2 + bx + c = 0$ is as follows
 - i) If $b^2 4ac < 0$, then the roots are imaginary. Further the roots are conjugate complex numbers.
 - ii) If $b^2 4ac = 0$, then the roots are rational and equal.

iii) If $b^2 - 4ac > 0$ and $b^2 - 4ac$ is a perfect square, then the roots are rational and not equal.

iv) If $b^2 - 4ac > 0$ and $b^2 - 4ac$ is not a perfect square, then the roots are irrational and not equal. Further the roots are conjugate surds.

- 16. A necessary and sufficient condition for the quadratic equations $a_1x^2 + b_1x + c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ to have a common root is $(c_1a_2 c_2a_1)^2 = (a_1b_2 a_2b_1)(b_1c_2 b_2c_1)$. The common root is $\frac{c_1a_2 c_2a_1}{a_1b_2 a_2b_1}$.
- 17. If the roots of $ax^2 + bx + c = 0$ are imaginary (complex roots) then for $x \in R$, $ax^2 + bx + c$ and a have the same sign.
- 18. If the roots of $ax^2 + bx + c = 0$ are real and equal to $\alpha = -b/2a$, then for $\alpha \neq x \in R$, $ax^2 + bx + c$ and a have the same sign.

- 19. Let α , β be the real roots of $ax^2 + bx + c = 0$ and $\alpha < \beta$. Then i) $x \in R$, $\alpha < x < \beta \implies ax^2 + bx + c$ and a have opposite signs. ii) $x \in R$, $x < \alpha$ or $x > \beta \Rightarrow ax^2 + bx + c$ and a have the same sign. For $x \in R$, the sign of a quadratic expression $ax^2 + bx + c$ is same as that of 'a' except when the 20. roots of the equation $ax^2 + bx + c = 0$ are real and x lies between them. Let $f(x) = ax^2 + bx + c$ be a quadratic function. 21. i) If a > 0 then f(x) has minimum value at $x = \frac{-b}{2a}$ and the minimum value $= \frac{4ac - b^2}{4a}$. ii) If a < 0 then f(x) has maximum value at $x = \frac{-b}{2a}$ and the maximum value $\frac{4ac - b^2}{4a}$. If $ax^2 + bx + c$ is a quadratic expression, then $ax^2 + bx + c > 0$ or $ax^2 + bx + c \ge 0$ or $ax^2 + bx + c < c$ 22. 0 or $ax^2 + bx + c \le 0$ is called a *quadratic inequation* or *quadratic inequality*. If a, b, c, f, g, h are complex numbers and at least one of a, h, b is nonzero, then $ax^2 + 2hxy + by^2$ 23. + 2gx + 2fy + c is called a *quadratic expression* or *second degree linear expression* in x and y. If a, h, b are complex numbers and atleast one of them is nonzero, then $ax^2 + 2hxy + by^2$ is called 24. a second degree homogeneous expression in x and y. Every second degree homogeneous expression in x and y can be resolved into two linear factors. 25. The necessary and sufficient condition that $S = ax^2 + 2hxy + by^2 + 2gx + 2fy + c$ can be resolved 26. into two linear factors is $\Delta = abc + 2fgh - af^2 - bg^2 - ch^2 = 0$.
- 27. S can be resolved into two real linear factors \Leftrightarrow abc + 2fgh af² bg² ch² = 0. h² ≥ ab, g² ≥ ac, f² ≥ bc.
- 28. The condition that the roots of $ax^2 + bx + c = 0$ may be in the ratio m : n is mnb² = ac (m + n)².
- 29. If a + ib is a root of $px^2 + qx + r = 0$, p, q, $r \in \mathbb{R}$, then the other root is a ib.
- 30. If $a \pm \sqrt{b}$ is a root of $px^2 + qx + r = 0$, then the other root is $a \pm \sqrt{b}$.(p, q, r $\in Q$)
- 31. If x > 0 then the least value of x + 1/x is 2 and if x < 0, x + 1/x < -2.
- 32. The condition that the roots of $ax^2 + bx + c = 0$ are in the ratio m : n is mn b² = (m + n)² ac
- 33. The condition that one root of $ax^2 + bx + c = 0$ may be k times the other root is $(k + 1)^2 + ac = kb^2$
- 34. If one root of the quadratic equation $ax^2 + bx + c = 0$ is equal to the nth power of the other then $(ac^n)^{\frac{1}{n+1}} + (a^nc)^{\frac{1}{n+1}} + b = 0$
- 35. The condition that one root of $ax^2 + bx + c = 0$ may be the square of the other is ac (a + c) + b³ = 3abc
- 36. If the ratio of the roots of the equation $ax^2 + bx + c = 0$ is same as three ratio of the roots of $px^2 + qx + r=0$. Then $\frac{b^2}{ac} = \frac{q^2}{pr}$.
- 37. If the roots of the equation $ax^2 + bx + c=0$ be the square roots of the roots of the equation $px^2 + qx + r = 0$. Then $2apc = pb^2 + qa^2$.
- 38. If a + b + c = 0. Then the roots of $ax^2 + bx + c = 0$ are 1, c/a.
- 39. If a + c = b. Then the roots of $ax^2 + bx + c = 0$ are -1, -c/a.
- 40. The condition that the roots of the equation $ax^2 + bx + c = 0$ are reciprocal of those of $px^2 + qx + r = 0$ is $acq^2 = b^2 pr$.
- 41. If α , β are the roots of $f(x) = ax^2 + bx + c = 0$. Then the equation having roots

- i) $\frac{1-\alpha}{1+\alpha}, \frac{1-\alpha}{1+\alpha}$ is $f\left(\frac{1-x}{1+x}\right) = 0$
- ii) $\frac{\alpha + p}{q}, \frac{\beta + p}{q}$ is f(xq p) = 0

iii)
$$\frac{\alpha}{\alpha+1}, \frac{\beta}{\beta+1}$$
 is $f\left(\frac{x}{1-x}\right) = 0$

- 42. $\frac{p-\alpha}{q+\alpha}, \frac{p-\beta}{q+\beta}$ is $f\left(\frac{p-qx}{1+x}\right) = 0$
- 43. If x > 0. Then the least of x + 1/x is 2.
- 44. If x > 0. Then the least value of $ax + \frac{b}{x}$ is $2\sqrt{ab}$.

45. If a_1, a_2, \ldots, a_n are positive, then the least value of $(a_1 + a_2 + \ldots, a_n) \left(\frac{1}{a_1} + \frac{1}{a_2} + \ldots, \frac{1}{a_n}\right)$ is n^2 .

46. If a > 0. Then $\sqrt{a + \sqrt{a + \sqrt{a + \dots \dots \infty}}} = \frac{1 + \sqrt{4a + 1}}{2}$.