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1. QUADRATIC EXPRESSIONS - Quick Review

If a, b, ¢ are complex numbers and a = 0, then the expression ax? + bx + ¢ is called a quadratic
expression.

If a, b, ¢ are complex numbers and a = 0, then ax®+ bx + ¢ = 0 is called a quadratic equation.

A complex number o is said to be a root or solution of the quadratic equation ax?+ bx + ¢ = 0 if
aa’ +bo + ¢ = 0.

2
The roots of ax? + bx + ¢ = 0 are @'
If o, B are the roots of ax*+ bx + ¢ =0, theno”ﬁz—g,aﬁz %

If o and B are the roots of ax’ + bx + ¢ = 0, then ax?+ bx + ¢ = a(x — a)(x — B).

The quadratic equation having roots o, B is (X — a)(x = B) = 0 or x* = (o + B)Xx + aff = 0.

If f(x) = ax® + bx + ¢ =0 is a quadratic equation then the quadratic equation whose roots are the
reciprocals of the roots of f(x) = 0 is f(1/x) = 0.

If f(x) = ax’ + bx + ¢ = 0 is a quadratic equation then the quadratic equation whose roots are
greater by k than those of f(x) = 0 is f(x — k) = 0.

If f(x) = ax’ + bx + ¢ = 0 is a quadratic equation then the quadratic equation whose roots are
smaller by k than those of f(x) = 0 is f(x + k) = 0.

If f(x) = ax’ + bx + ¢ = 0 is a quadratic equation then the quadratic equation whose roots are
numerically equal but opposite in ssign of the roots of f(x) = 0 is f(—x) = 0.

If f(x) = ax* + bx + ¢ = 0 is a quadratic equation then the quadratic equation whose roots are
multiplied by k of those of f(x) = 0 is f(x/k) = 0.

If f(x) = ax’ + bx + ¢ = 0 is a quadratic equation, then b? — 4ac is called the discriminant of ax® +
bx +c=0.

If a, b, c are real then the nature of the rots of ax?+ bx + ¢ = 0 is as follows

i) If b? — 4ac < 0, then the rots are imaginary. Further the roots are conjugate complex numbers.

i) If b? — 4ac = 0, then the roots are real and equal.

iii) If b? — 4ac > 0, then the roots are real and not equal.

If a, b, c are rational then the nature of the roots of ax? + bx + ¢ = 0 is as follows

i) If b — 4ac < 0, then the roots are imaginary. Further the roots are conjugate complex numbers.
ii) If b?—4ac = 0, then the roots are rational and equal.

iii) If b? — 4ac > 0 and b® — 4ac is a perfect square, then the roots are rational and not equal.

iv) If b? — 4ac > 0 and b® — 4ac is not a perfect square, then the roots are irrational and not equal.
Further the roots are conjugate surds.

A necessary and sufficient condition for the quadratic equations a;x? + bix + ¢; = 0 and axx® + box
+ ¢, = 0 to have a common root is (C1a, — Cxa1)* = (aib, — aby)(biCs — boc1). The common root is
Ca, —Ca,

a1b2 _a2b1 .

If the roots of ax? + bx + ¢ = 0 are imaginary (complex roots) then for x € R, ax*+ bx + cand a
have the same sign.

If the roots of ax? + bx + ¢ = 0 are real and equal to o = —b/2a, then for o # x € R, ax’ + bx + ¢
and a have the same sign.
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Let o, B be the real roots of ax*+ bx + ¢ = 0 and a.<p. Then
i) X € R, a <X < B = ax*+ bx + ¢ and a have opposite signs.
ii)x € R, x <o or x> p = ax’+ bx + ¢ and a have the same sign.

For x e R, the sign of a quadratic expression ax? + bx + ¢ is same as that of ‘a’ except when the
roots of the equation ax”+ bx + ¢ = 0 are real and x lies between them.

Let f(x) = ax* + bx + ¢ be a quadratic function.

4ac —b?
4a

4ac - b?

i) If a > 0 then f(x) has minimum value at x = ;—Z and the minimum value =

ii) If a < 0 then f(x) has maximum value at x = ;—z and the maximum value

If ax® + bx + c is a quadratic expression, then ax®+ bx + ¢ > 0 or ax’+ bx + ¢ > 0 or ax’+ bx + ¢ <
0 or ax’+ bx + ¢ < 0 iis called a quadratic inequation or quadratic inequality.

If a, b, c, f, g, h are complex numbers and at least one of a, h, b is nonzero, then ax? + 2hxy + by?
+ 2gx + 2fy + c is called a quadratic expression or second degree linear expression in x and y.

If a, h, b are complex numbers and atleast one of them is nonzero, then ax? + 2hxy + by? is called
a second degree homogeneous expression in x and y.

Every second degree homogeneous expression in X and y can be resolved into two linear factors.
The necessary and sufficient condition that S = ax? + 2hxy + by? + 2gx + 2fy + ¢ can be resolved
into two linear factors is A=abc+2fgh-af? — bg? — ch’=0.

S can be resolved into two real linear factors < abc + 2fgh — af? — bg? — ch®= 0. h? > ab, g° > ac,
2 > bc.

The condition that the roots of ax? +bx + ¢ = 0 may be in the ratio m : n is mnb?= ac (m + n)>.
Ifa+ibisarootofpx’+qgx+r=0,p,q,r e R, then the other root is a — ib.

If a ++b is a root of px? + gx + r = 0, then the other rootisa b .(p, 9, r € Q)

If x > 0 then the least value of x + 1/x is2 and if x <0, X + 1/x <-2.

The condition that the roots of ax? + bx + ¢ =0 are in the ratiom : nis mnb?= (m +n)?ac

The condition that one root of ax® + bx + ¢ =0 may be k times the other root is (k + 1)*+ ac = kb?

If one root of the quadratic equation ax? + bx + ¢ =0 is equal to the nth power of the other then
1 1

(ac")" +(a"c)™ +b=0
The condition that one root of ax® + bx + c= 0 may be the square of the other is
ac (a+c) +b®=3abc
If the ratio of the roots of the equation ax* + bx + ¢ = 0 is same as three ratio of the roots of px* +
gx +r=0. Then b =i.
ac pr
If the roots of the equation ax® + bx + c=0 be the square roots of the roots of the equation px¢ + gx
+r=0. Then 2apc = pb® + ga’.
If a+ b+ c= 0. Then the roots of ax* + bx + c= 0 are 1, c/a.
If a + ¢ = b. Then the roots of ax? + bx + c= 0 are -1, —c/a.
The condition that the roots of the equation ax? + bx + ¢ = 0 are reciprocal of those of
px? + gx + r =0 is acq® = b? pr.
If o, B are the roots of f(x) = ax? + bx + ¢ =0. Then the equation having roots
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i 1—oc,1—0L is f(l—szo

1+a 1+a 1+Xx

ii) Ot+p B+p ;
q q

iy o B isf([ X j
a+l B+1 1-x

p-a p-B ; f(p—qXJzo

q+a q+[3 1+x

isf(xq—p)=0

=0

If x > 0. Then the least of x + 1/x is 2.

If x > 0. Then the least value of ax + 2 is 2.ab .
X




