1. QUADRATIC EXPRESSIONS - Quick Review

1. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are complex numbers and $\mathrm{a} \neq 0$, then the expression $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$ is called a quadratic expression.
2. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are complex numbers and $\mathrm{a} \neq 0$, then $\mathrm{ax}+\mathrm{bx}+\mathrm{c}=0$ is called a quadratic equation.
3. A complex number α is said to be a root or solution of the quadratic equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ if $a \alpha^{2}+b \alpha+c=0$.
4. The roots of $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ are $\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 a \mathrm{c}}}{2 \mathrm{a}}$.
5. If α, β are the roots of $a x^{2}+b x+c=0$, then $\alpha+\beta=-\frac{b}{a}, \alpha \beta=\frac{c}{a}$.
6. If α and β are the roots of $a x^{2}+b x+c=0$, then $a x^{2}+b x+c=a(x-\alpha)(x-\beta)$.
7. The quadratic equation having roots α, β is $(x-\alpha)(x-\beta)=0$ or $x^{2}-(\alpha+\beta) x+\alpha \beta=0$.
8. If $f(x)=a x^{2}+b x+c=0$ is a quadratic equation then the quadratic equation whose roots are the reciprocals of the roots of $f(x)=0$ is $f(1 / x)=0$.
9. If $f(x)=a x^{2}+b x+c=0$ is a quadratic equation then the quadratic equation whose roots are greater by k than those of $f(x)=0$ is $f(x-k)=0$.
10. If $f(x)=a x^{2}+b x+c=0$ is a quadratic equation then the quadratic equation whose roots are smaller by k than those of $f(x)=0$ is $f(x+k)=0$.
11. If $f(x)=a x^{2}+b x+c=0$ is a quadratic equation then the quadratic equation whose roots are numerically equal but opposite in ssign of the roots of $f(x)=0$ is $f(-x)=0$.
12. If $f(x)=a x^{2}+b x+c=0$ is a quadratic equation then the quadratic equation whose roots are multiplied by k of those of $f(x)=0$ is $f(x / k)=0$.
13. If $f(x)=\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ is a quadratic equation, then $\mathrm{b}^{2}-4 \mathrm{ac}$ is called the discriminant of $\mathrm{ax}^{2}+$ $b x+c=0$.
14. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are real then the nature of the rots of $\mathrm{ax}+\mathrm{bx}+\mathrm{c}=0$ is as follows
i) If $b^{2}-4 a c<0$, then the rots are imaginary. Further the roots are conjugate complex numbers.
ii) If $b^{2}-4 a c=0$, then the roots are real and equal.
iii) If $b^{2}-4 a c>0$, then the roots are real and not equal.
15. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are rational then the nature of the roots of $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ is as follows
i) If $\mathrm{b}^{2}-4 \mathrm{ac}<0$, then the roots are imaginary. Further the roots are conjugate complex numbers.
ii) If $\mathrm{b}^{2}-4 \mathrm{ac}=0$, then the roots are rational and equal.
iii) If $b^{2}-4 a c>0$ and $b^{2}-4 a c$ is a perfect square, then the roots are rational and not equal.
iv) If $b^{2}-4 a c>0$ and $b^{2}-4 a c$ is not a perfect square, then the roots are irrational and not equal.

Further the roots are conjugate surds.
16. A necessary and sufficient condition for the quadratic equations $a_{1} x^{2}+b_{1} x+c_{1}=0$ and $a_{2} x^{2}+b_{2} x$ $+\mathrm{c}_{2}=0$ to have a common root is $\left(\mathrm{c}_{1} \mathrm{a}_{2}-\mathrm{c}_{2} \mathrm{a}_{1}\right)^{2}=\left(\mathrm{a}_{1} \mathrm{~b}_{2}-\mathrm{a}_{2} \mathrm{~b}_{1}\right)\left(\mathrm{b}_{1} \mathrm{c}_{2}-\mathrm{b}_{2} \mathrm{c}_{1}\right)$. The common root is $\frac{c_{1} a_{2}-c_{2} a_{1}}{a_{1} b_{2}-a_{2} b_{1}}$.
17. If the roots of $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ are imaginary (complex roots) then for $\mathrm{x} \in \mathrm{R}, \mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$ and a have the same sign.
18. If the roots of $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ are real and equal to $\alpha=-\mathrm{b} / 2 \mathrm{a}$, then for $\alpha \neq \mathrm{x} \in \mathrm{R}, \mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$ and a have the same sign.
19. Let α, β be the real roots of $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ and $\alpha<\beta$. Then
i) $x \in R, \alpha<x<\beta \Rightarrow a x^{2}+b x+c$ and a have opposite signs.
ii) $x \in R, x<\alpha$ or $x>\beta \Rightarrow a x^{2}+b x+c$ and a have the same sign.
20. For $x \in R$, the sign of a quadratic expression $a x^{2}+b x+c$ is same as that of ' a ' except when the roots of the equation $a x^{2}+b x+c=0$ are real and x lies between them.
21. Let $\mathrm{f}(\mathrm{x})=\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$ be a quadratic function.
i) If $\mathrm{a}>0$ then $\mathrm{f}(\mathrm{x})$ has minimum value at $\mathrm{x}=\frac{-\mathrm{b}}{2 \mathrm{a}}$ and the minimum value $=\frac{4 \mathrm{ac}-\mathrm{b}^{2}}{4 \mathrm{a}}$.
ii) If $\mathrm{a}<0$ then $\mathrm{f}(\mathrm{x})$ has maximum value at $\mathrm{x}=\frac{-\mathrm{b}}{2 \mathrm{a}}$ and the maximum value $\frac{4 \mathrm{ac}-\mathrm{b}^{2}}{4 \mathrm{a}}$.
22. If $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$ is a quadratic expression, then $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}>0$ or $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c} \geq 0$ or $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}<$ 0 or $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c} \leq 0$ is called a quadratic inequation or quadratic inequality.
23. If $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{f}, \mathrm{g}, \mathrm{h}$ are complex numbers and at least one of $\mathrm{a}, \mathrm{h}, \mathrm{b}$ is nonzero, then $\mathrm{ax}^{2}+2 \mathrm{hxy}+\mathrm{by}^{2}$ $+2 g x+2 f y+c$ is called a quadratic expression or second degree linear expression in x and y.
24. If $\mathrm{a}, \mathrm{h}, \mathrm{b}$ are complex numbers and atleast one of them is nonzero, then $\mathrm{ax}^{2}+2 h \mathrm{hy}+\mathrm{by}^{2}$ is called a second degree homogeneous expression in x and y .
25. Every second degree homogeneous expression in x and y can be resolved into two linear factors.
26. The necessary and sufficient condition that $S=a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c$ can be resolved into two linear factors is $\Delta=a b c+2 f g h-a f^{2}-\mathrm{bg}^{2}-\mathrm{ch}^{2}=0$.
27. S can be resolved into two real linear factors $\Leftrightarrow \mathrm{abc}+2 \mathrm{fgh}-\mathrm{af}^{2}-\mathrm{bg}^{2}-\mathrm{ch}^{2}=0 . \mathrm{h}^{2} \geq \mathrm{ab}, \mathrm{g}^{2} \geq \mathrm{ac}$, $\mathrm{f}^{2} \geq \mathrm{bc}$.
28. The condition that the roots of $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ may be in the ratio $\mathrm{m}: \mathrm{n}$ is $\mathrm{mnb}^{2}=\mathrm{ac}(\mathrm{m}+\mathrm{n})^{2}$.
29. If $\mathrm{a}+\mathrm{ib}$ is a root of $\mathrm{px}^{2}+\mathrm{qx}+\mathrm{r}=0, \mathrm{p}, \mathrm{q}, \mathrm{r} \in \mathrm{R}$, then the other root is $\mathrm{a}-\mathrm{ib}$.
30. If $a \pm \sqrt{b}$ is a root of $\mathrm{px}^{2}+q x+r=0$, then the other root is $a \mp \sqrt{b} .(p, q, r \in Q)$
31. If $x>0$ then the least value of $x+1 / x$ is 2 and if $x<0, x+1 / x<-2$.
32. The condition that the roots of $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ are in the ratio $\mathrm{m}: \mathrm{n}$ is $\mathrm{mn}^{2}=(\mathrm{m}+\mathrm{n})^{2}$ ac
33. The condition that one root of $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ may be k times the other root is $(\mathrm{k}+1)^{2}+\mathrm{ac}=\mathrm{kb}^{2}$
34. If one root of the quadratic equation $a x^{2}+b x+c=0$ is equal to the nth power of the other then $\left(a c^{n}\right)^{\frac{1}{n+1}}+\left(a^{n} c\right)^{\frac{1}{n+1}}+b=0$
35. The condition that one root of $a x^{2}+b x+c=0$ may be the square of the other is
ac $(\mathbf{a}+\mathbf{c})+\mathbf{b}^{3}=\mathbf{3 a b c}$
36. If the ratio of the roots of the equation $a x^{2}+b x+c=0$ is same as three ratio of the roots of $p x^{2}+$ $q x+r=0$. Then $\frac{b^{2}}{a c}=\frac{q^{2}}{p r}$.
37. If the roots of the equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ be the square roots of the roots of the equation $\mathrm{px}{ }^{2}+\mathrm{qx}$ $+r=0$. Then 2apc $=\mathrm{pb}^{2}+\mathrm{qa}^{2}$.
38. If $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$. Then the roots of $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ are $1, \mathrm{c} / \mathrm{a}$.
39. If $\mathrm{a}+\mathrm{c}=\mathrm{b}$. Then the roots of $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ are $-1,-\mathrm{c} / \mathrm{a}$.
40. The condition that the roots of the equation $a x^{2}+b x+c=0$ are reciprocal of those of $\mathrm{px}^{2}+\mathrm{qx}+\mathrm{r}=0$ is $\mathrm{acq}^{2}=\mathrm{b}^{2} \mathrm{pr}$.
41. If α, β are the roots of $f(x)=a x^{2}+b x+c=0$. Then the equation having roots
i) $\frac{1-\alpha}{1+\alpha}, \frac{1-\alpha}{1+\alpha}$ is $f\left(\frac{1-x}{1+x}\right)=0$
ii) $\frac{\alpha+p}{q}, \frac{\beta+p}{q}$ is $f(x q-p)=0$
iii) $\frac{\alpha}{\alpha+1}, \frac{\beta}{\beta+1}$ is $\mathrm{f}\left(\left(\frac{x}{1-x}\right)=0\right.$
42. $\frac{p-\alpha}{q+\alpha}, \frac{p-\beta}{q+\beta}$ is $f\left(\frac{p-q x}{1+x}\right)=0$
43. If $x>0$. Then the least of $x+1 / x$ is 2 .
44. If $x>0$. Then the least value of $a x+\frac{b}{x}$ is $2 \sqrt{a b}$.
45. If $a_{1}, a_{2} \ldots \ldots a_{n}$ are positive, then the least value of $\left(a_{1}+a_{2}+\ldots \ldots . a_{n}\right)\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots \ldots \frac{1}{a_{n}}\right)$ is n^{2}.
46. If $\mathrm{a}>0$. Then $\sqrt{\mathrm{a}+\sqrt{\mathrm{a+} \mathrm{\sqrt{a+} \mathrm{\ldots} \mathrm{\ldots} \mathrm{\infty}}}}=\frac{1+\sqrt{4 \mathrm{a}+1}}{2}$.

